1071

The Stereochemistry of Some Stages in Gibberellin Biosynthesis

By J. R. HANSON* and A. F. WHITE

(School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ)

Summary The stereospecific labelling of the gibberellins and the kaurenolides with 2(R) and 5(R)-[³H]mevalonate leads to the conclusion that the dehydrogenation of ring A is a *cis*-process and that hydroxylation of ring B takes place with retention of configuration.

It has been shown¹ that the biosynthesis of the gibberellins and kaurenolides lies through the tetracyclic diterpene (-)-kaurene (I). This biosynthesis is followed by stepwise hydroxylation leading to the formation of 7β -hydroxy-(—)-kaur-16-en-19-oic acid which acts as a precursor of both the kaurenolides and the gibbane aldehyde (II).² The absolute stereochemistry of the mevalonodi hydrogen atoms of the open-chain terpenoid precursors has been defined³ and we now extend this information to gibberellin and kaurenolide biosynthesis.

The formation of the antipodal (-)-kaurene is a function of the relative orientation of the double bonds of a geranylgeraniol precursor but does not disturb the pro "R" or pro

The incorporation of mevalonic acid into the metabolites of Gibberella fujikuroi

		2(R)- ³ H		5(R)- ⁸ H	
		³ H: ¹⁴ C	No. of ³ H	³ H : ¹⁴ C `	No. of ³ H
Mevalonic acid		9.0:1	-	9.5:1	
(-)-Kaurene (I)	••	9.0:1	4	9.5:1	4
7-Hydroxykaurenolide (III)		9.0:1	4	9.4:1	4
7,18-Dihydroxykaurenolide (IV)		8.0:1	3.6	9.15:1	4
Gibberellic acid (V)†		6.6:1	3	4.96:1	2
Gibberellin A_{4} (VI) \dagger	••	7.0:1	3	-	-
Gibberellin A_{13} (VII) †	••	6.8:1	3	7.43:1	3

† Purified as their methyl esters.

our results with doubly-labelled $[4(R)-{}^{3}H;2-{}^{14}C]$ mevalonic acid and we now detail our results with $[2(R)-^{3}H;2^{-14}C]$ - and $[5(R)-^{3}H;2-^{14}C]$ mevalonic acid, the latter fed as its DBED salt.

7-Hydroxykaurenolide from the $(2(R)-{}^{3}H]$ experiment

- ¹ B. E. Cross, R. H. B. Galt, and J. R. Hanson, J. Chem. Soc., 1964, 295.
- ² J. R. Hanson and A. F. White, *Chem. Comm.*, 1969, 410. ³ G. Popják and J. W. Cornforth, *Biochem. J.*, 1966, **101**, 553.
- J. R. Hanson and A. F. White, J. Chem. Soc. (C), 1969, 981.
 B. E. Cross, R. H. B. Galt, and J. R. Hanson, J. Chem. Soc., 1963, 2944.
- ⁶ R. H. B. Galt, *J. Chem. Soc.*, 1965, 3143. ⁷ B. E. Cross, *J. Chem. Soc.*, 1954, 4670.

was oxidized to 7-oxokaurenolide [3H:14C, 7.2:1] whilst the 7,18-dihydroxykaurenolide was oxidized to 7-oxo-18norkaurenolide [3H:14C, 5.0:0.75] thus locating a mevalonoid label at positions 7α and 18. Methyl gibberellate was converted into methyl gibberate [3H:14C, 6.68:1] with no loss of label.

The metabolites from the $[5(R)-{}^{3}H]$ experiment were degraded as follows. 7-Hydroxykaurenolide was oxidized to 7-oxokaurenolide [3H:14C, 9.77:1] and the latter treated with base. The gummy product showed [3H:14C, 7.25:1]. Alternatively, the kaurenolide was converted⁵ into 6-oxo-(-)-kaur-16-en-19-oic acid $[^3\mathrm{H}:^{14}\mathrm{C},\ 7\cdot35:1]$ thus locating a label at the 6α -position. Gibberellin A₁₃ trimethyl ester was oxidized to the corresponding ketone [3H:14C, 7.43:1] and the latter treated with alkali and then remethylated with diazomethane to form the nor-gibbane (VIII) [3H:14C, 4.85:1].⁶ Methyl gibberellate was converted into methyl allogibberate [3H:14C, 4.99:1] and thence to methyl gibberate [³H:¹⁴C, 4.96:1], which was oxidized to methyl gibberdionate [³H:¹⁴C, 2.66:1],⁷ thus locating a label at (the gibbane) position 11 in gibberellic acid. Hydrolysis of methyl gibberate with alkali gave an acid [3H:14C, 2.48:1] with the loss of only one tritium from the enolizable position of the cyclopentanone. Thus there was no evidence for the presence of a label at the 10-position.

A number of conclusions may be drawn from these results. Hydroxylation of ring B to form the kaurenolides must take place with retention of configuration at C-6 and C-7. However, ring-contraction to form the gibberellins which takes place at the aldehyde oxidation level, results in the loss of 5(R)-mevalonoid hydrogen from C-6 (C-10 of the gibbane skeleton). This suggests that the leaving group which initiates ring contraction possesses the 6β -stereochemistry. Secondly there is evidence for the stereochemistry of processes on ring A of gibberellic acid. The dehydrogenation step to form the Δ^3 -double bond involves a "cis" elimination of hydrogen from the " α " face of a saturated gibberellin. This must exclude processes involving hydroperoxidation of Δ^2 -gibberellins as this would require the elimination of a β -hydrogen atom (cis to the hydroperoxide) at C-4.

(Received, July 25th, 1969; Com. 1136.)